DODLKIT

Measure Efficiency: Calculated performance

Can I measure flare efficiency? > Measure Efficiency: Calculated performance

Summary

Measured flare data from existing equipment is used to calculate flare (NHV_{CZ}) or combustion zone net heating value dilution parameter (NHV_{dil}) . With this, the flare combustion/destruction efficiency (CE/DE) can then be inferred indirectly using equations derived from previous empirical studies. A high flare CE/DE is required to ensure sufficient destruction of VOCs sent to the flare.

Follow the link to the right of this page to access an online calculation tool

How it Works

• Vent Gas' NHV is calculated from its components' NHV values or alternatively, obtained from a calorimeter.

- A higher NHV contribution/adjustment is applied for hydrogen (~1212 BTU/SCF @ 60F 1 atm) as H2 was found to promote better destruction in the flare
- The NHV_{C7} or NHV_{dil} is then determined depending on the type and size of flare volumetric average of the flare constituent's NHV (air, steam & vent gas). Equations are listed below
- NHV_{CZ} is most commonly used for elevated flares with the exception of air-assisted flares and small steam-assisted flares (< 9") which uses NHV_{dil} • From past , the higher the NHV_{CZ} or NHV_{dil} , the higher the flare CE/DE and vice versa

Equations:

NHVcz - US EPA regulatory requirement is 270 BTU/scf

 $NHVcz = \frac{Qvg \ x \ NHVvg}{(Qvg + Qs + Qa, premix)}$ Where: NHV_a = Net heating value of combustion zone gas, Btu/scf. NHV_{ss} = Net heating value of flare vent gas, Btu/scf. Que = Cumulative volumetric flow of flare vent gas, scf. Qs = Cumulative volumetric flow of total steam, scf. Querton = Cumulative volumetric flow of premix assist air, scf. NHV_{dil}- US EPA regulatory requirement is 22 BTU/ft² $\label{eq:NHVdil} NHVdil = \frac{Qvg \ x \ Diam \ x \ NHVvg}{(Qvg + Qs + Qa, premix \ Qa, parameter)}$ Where: NHVe = Net heating value dilution parameter, Btu/ft NHV_w = Net heating value of flare vent gas, Btu/scf. Q_{ss} = Cumulative volumetric flow of flare vent gas, scf. Diam = Effective diameter of the unobstructed area of the flare tip for flare vent gas flow, ft. determine the diameter as $Diam = 2 x \sqrt{Area/\pi}$

Q. = Cumulative volumetric flow of total steam, scf. Queenergie = Cumulative volumetric flow of premix assist air, scf. Quantimeter = Cumulative volumetric flow of perimeter assist air, scf.

Advantages

 \checkmark

 Able to use existing equipment

 \checkmark

 Quick to implement once required data is collected

 \checkmark

 Suitable to be applied for elevated flares of variable size and designs

~

 Can be done remotely from outside process boundary as only involves workbook calculations

 \checkmark

 Method can be integrated directly to distributed control system

Limitations

×

×

 Cannot be applied if required input data for calculations is unavailable

• Calculation method depends significantly on input data quality, ie: flow meter ranges and measurement errors.

Go Deeper

TCEQ Study

Case study

A study was done to identify the impacts of steam/air assist as well as turn-downed vent gas flow rates on an elevated flare's CE/DE. The study involved varying the steam/air and vent gas flow rates while directly measuring the VOC emissions from the flare stack to calculate CE/DE. This calculated CE/DE values were then validated by comparing against separate results obtained from the following installed technologies:

- 1. Hyper-Spectral Imaging
- 2. Passive and Active Fourier Transform Infrared

The NHV_{CZ} or NHV_{dil} of the flare is able to be calculated for each test cycle using the vent gas composition as well as the steam/air flow rate to assess the relationship between NHV_{CZ}/NHV_{dil} and the flare's CE/DE.

#	Vent Gas (Ib/hr)	Steam (Ib/hr)	Vent Gas Composition	Calculated NHV _{CZ} (BTU/SCF)	Measured
1	920	0	1:4 Natural Gas to Propylene Vol Ratio Diluted with N2	355.8	>99
2	2342	1000	1:4 Natural Gas to Propylene Vol Ratio Diluted with N2	208.9	90
3	2342	2000	1:4 Natural Gas to Propylene Vol Ratio Diluted with N2	147.9	68

Example Data – Steam Assisted Flare > 9" Diameter

*Dilution with N2 to target vent gas NHV of 356 BTU/SCF. Conditions for volume is at 60°F & 1 atm *From TCEQ test series S3 & S4

Example Data – Air Assisted Flare

#	Vent Gas (Ib/hr)	Air (lb/hr)	Vent Gas Composition	Calculated NHV _{dil} (BTU/ft ²)	Measured
1	900	20,000	1:4 Natural Gas to Propylene Vol Ratio Diluted with N2	30.0	>99
2	900	90,000	1:4 Natural Gas to Propylene Vol Ratio Diluted with N2	6.9	78

*Dilution with N2 to target vent gas NHV of 356 BTU/SCF. Conditions for volume is at 60°F & 1 atm *From TCEQ test series A3, 24" diameter of flare tip

Observations

- As steam/air flow is increased or vent gas flow is decreased, the flare's NHV_{CZ} & NHV_{dil} will decrease The higher the flare's NHV_{CZ} or NHV_{dil}, the higher the measured CE and DE

Can I measure flare efficiency?

Measure Efficiency: Predictive Feedback and Control

Measure Efficiency: Flare Simulations

Measure Efficiency: Drone equipped with single methane sensor

Measure Efficiency: Aerial measurement of flare efficiency

Measure Efficiency: Extractive method for determining flare efficiency

